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Abstract
Automated Writing Evaluation (AWE) is gaining more and more presence, with Grammarly being a 
prominent example of this kind of software, which provides automated feedback on essay writing. 
While the Grammarly advertisement is full of praise regarding its ability to give meaningful feedback 
at various levels, including grammar or form, plagiarism, vocabulary and style, there has been little 
third party research to support these claims. Since Grammarly’s vocabulary feedback accuracy has 
already been examined to some extent (Dodigovic, Mlynarski & Wei, 2016), this study was designed 
to evaluate the accuracy of Grammarly’s grammar checker feedback. It did so by investigating the 
reports generated by Grammarly as a response to a small corpus of EFL writing, compiled from 
essays written by Armenian undergraduate students. The results were compared with those of 
human raters. In addition to Grammarly’s error detection power, the study also investigated the kind 
of remediation that Grammarly suggested. The comparisons revealed that on detected errors of form, 
Grammarly mostly provides accurate feedback, with occasional inconsistencies. It was also found to 
provide mainly adequate remediation for the correctly detected errors of form. However, it also left 
a number of errors undetected, which led to the omission of remediation. The study concluded that, 
despite its considerable usefulness, when using Grammarly, English learners should avoid relying 
solely on its feedback.
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1  Introduction

Automated Writing Evaluation (AWE), of which Grammarly is an example, has become widespread 
in English as an Additional Language (EAL) classrooms. Currently, one of the models of AWE use 
includes teachers as part of the evaluation. Within this model, the teacher will need to check the feedback 
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provided by such software and compose the final feedback (Williamson, 2008). However, an emerging 
model eliminates the participation of the teacher and provides instant feedback to the learners through 
the software. While some criticize this model because of its allegedly inaccurate feedback (Mitkov, 
2005), there are very few studies that evaluate the performance of such software. This might facilitate 
potentially inadequate use of the software. 

The present study evaluates the accuracy of feedback provided on form through the second model, 
where teachers are eliminated from the automated feedback provision. What is meant by form is mostly 
grammatical structure of individual utterances. While Grammarly may be present in some students’ daily 
life, it is not clear to what extent they are able to critically evaluate the feedback received, especially 
in the absence of teacher mediation. This study is likely to assist students, teachers and educational 
administrators in making executive decisions regarding the purchase and use of this software.

2  Literature Review

2.1 Errors in general

Errors are the deviations from the standard, accepted rules of a language committed by the learners 
of a second language (Ellis, 1992). They are generally viewed as one of the most important aspects in 
language learning by many EFL teachers (Polio, 2012). Errors may point to a variety of causes, including 
negative transfer from L1 (Zobl, 1980), ineffective teaching methodology or the inadequacies of learning 
strategies (Dodigovic, 2005; Huang, 2002). 

Theoretically and practically, errors have been viewed and addressed in different ways. The 
behaviorist approach views errors as the inability of learners to change the old habits and create new 
ones. These occur in the learner output when the learners fail to adequately respond to a stimulus in L2 
(Walsh & Lado, 1957). The behaviorists place emphasis on the attempt to avoid errors at all cost, lest the 
wrong verbal behaviour be internalised. However, the view changes in the 1960s (Corder, 1967), leading 
to the idea of regularities in learner errors which represent a language of its own, i.e. interlanguage. 
The cognitivists approach error correction in a number of ways, since cognitivism views errors as signs 
that learners are testing hypotheses (Ortega, 2014). Thus James (1998) argues that error correction as a 
curative way of instruction is more effective than preventive instruction based on error avoidance.  Not 
everyone though favours explicit correction. Interactionists for example value indirect correction through 
repetition and recasts (Sarem & Shirzadi, 2014). It seems that Grammarly combines a variety of the 
above approaches.

2.2 Artificial intelligence and natural language processing 

Although not much is communicated about the makeup of Grammarly by its developers, given its 
capacity to detect and correct learner errors, one must assume that the software owes this capacity 
to Artificial Intelligence (AI).  AI includes Natural Language Processing (NLP), which arises from 
Computational Linguistics (Chapelle & Sauro, 2017). 

NLP is used to create intelligent tutoring systems (ITS) (Aleven, Roll, McLaren, & Koedinger, 2016; 
Amaral & Meurers, 2011; Crossley, Varner, Roscoe, & McNamara, 2013; Ferreira, Moore, & Mellish, 
2007; Lee, Lee, Noh, Lee, & Lee, 2011). The application of ITS, automated writing evaluation (AWE), 
automated essay scoring (AES) etc. is also known as Intelligent Computer Assisted Language Learning 
(ICALL) (Schulze, 2008). 

The studies of language tutors that incorporate NLP have taken a twofold approach: (1) focus on 
communication and (2) focus on form. However, some provide feedback on both dimensions (Holland 
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& Kaplan, 1995). For instance, one such aid, called the Intelligent Tutor has the ability to identify 
and correct the learner errors, using multiple sources of data in order to acquire knowledge needed to 
diagnose the errors (Dodigovic, 2007). 

2.3 Grammar checkers and error analysis

Grammar checkers, such as those found in word processors and Grammarly, are deemed to use Error 
Analysis (EA).  This is a branch of Applied Linguistics, initiated to satisfy the needs of teachers and 
researchers that had to analyze big chunks of input for errors, their diagnosis and correction. This field 
of study quickly started changing the understanding of Second Language Acquisition (SLA) during 
the 1970s (Heift & Schulze, 2007). While EA provides many benefits to understanding and supporting 
learning, it was also criticized for its limitations, including its inability to address all errors and the lack 
of focus on what the learner can produce (Dagneaux, Denness, & Granger, 1998). 

An article to the topic (Wilson, Olinghouse, & Andrada, 2014) argues that a computer providing 
feedback on writing of learners without the intervention of the teacher has no significant effect. It 
investigated 4-8 graders’ writings for a statewide assessment to determine whether the revisions based 
on automated feedback would show improvement. While during the first wave of testing the gains in 
student writing suggested associations with gains in automated writing feedback (AWF) under certain 
circumstances, the overall improvement growth declined over time. Another study (Debuse, Lawley, & 
Shibl, 2009) pinpoints the educators’ perspectives on using automated writing evaluation software as 
positive. While the research revolves around the educators’ and learners’ perspectives of such software 
packages and their effects on second language acquisition along with AWE serving as a reliable tool 
for language assessment, there is a noticeable dearth of articles that evaluate the accuracy of these 
applications and online services (Xi, 2010).

Amongst the few exceptions  (e.g. Chukharev-Hudilainen & Saricaoglu, 2016; Cotos, 2011; El-
Ebyary & Windeatt, 2010; Lai, 2010) is a study investigating the accuracy of Criterion, an advanced 
software package with similar functionality to Grammarly that is available to schools and universities 
(Hoang, 2019). It evaluates the feedback as a tool that has a positive impact on further drafts and 
writings of students that are exposed to the feedback of the application during early and developing 
stages of writing. Warschauer and Ware, in their 2006 study, compiled a collection of reports on software 
packages that were commercially available at that time. All three of these packages were compared in 
a table, where the products named “MY Access!” and “Holt Online Essay Scoring” provided holistic 
and component scoring, while “Criterion”, which is developed by ETS, provided a single holistic score. 
The latter was said to provide a “wide range of individualized feedback”, while the other two packages 
observed provided “limited individualized feedback” (Warschauer & Ware, 2006, p. 3). 

A study conducted in China used Grammarly and the Vocabulary Size Test (VST) to detect plagiarism 
(Dodigovic, Mlynarski, & Wei, 2016). The study used Grammarly to analyze the data and divide the 
output from the software into corresponding categories to track frequencies. Although this study only 
assessed Grammarly’s output on lexical errors it is methodologically similar to the present study, with the 
only difference being the focus on form in the present study.

Another way of assessing the value of AWE software is by comparing the feedback of software 
packages to those of human raters (Dikli & Bleyle, 2014; Shintani & Aubrey, 2016). Finally comparing 
the instructor’s feedback with that of an AES software Criterion (Li, Link, Ma, Yang & Hegelheimer, 
2014; Pahl & Kenny, 2009), based on the perception of students revealed questionable efficacy of the 
software in ESL contexts. 

A study investigating the use of AWE as a pedagogical tool (Sevcikova, 2017) used Grammarly and 
Marking Mate, along with 10 teachers, to evaluate four texts. When comparing the feedback reports, only 
one text demonstrated major discrepancies between AWE and human rater reports. This study compared 
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the final report grades provided by human raters and AWE. However, this could result in inaccuracy of 
the comparison, as the reports might display the same grade for each essay, for very different reasons. 
For example, human raters and AWE could identify different errors in the text, but award the same grade.

A similar study (Dembsey, 2017) looked at the accuracy of correction (comment cards) provided by 
Grammarly. While methodologically not too different from the rest of the literature in the field (Dale, 
2016; Schraudner, 2007), this article makes strong claims about Grammarly’s comment cards that occur 
when the application detects errors in text. The author recommends that writing centers make their own 
decisions when it comes to compensating for the limitations of their services. Instead of offering students 
Grammarly, Dembsey (2017) is in favour of training human consultants to give more effective feedback. 
While this paper did marginally comment on the accuracy of Grammarly’s feedback, this was far from 
being in its focus. In this situation, it seems purposeful to examine the accuracy of Grammarly’s feedback 
directly, using its correction of actual student writing.

3  Methodology

3.1 Research design

This study employs a mixed-method approach, including a corpus of student writing and its 
computational and manual processing in order to answer the following research questions:

1. How accurate is the detection of errors of form by Grammarly?
2. How accurate are the corrections of errors of form provided by Grammarly?

3.2.1 The corpus

In order to evaluate the performance of Grammarly when it comes to checking text for errors of form and 
providing correction, a 36000-word corpus was compiled using 56 essays (Fig. 1). These essays were 
written by first year undergraduate students of the American University of Armenia (AUA), most in their 
late teens, all of whom studied English as their major. The first language of the students was Armenian. 
In compliance with the institutional code, the students gave consent for their anonymized essays to be 
used in research. 

3.2.2 Grammarly

Grammarly is an application developed with a preliminary aim of enhancing English language writing in 
both general and academic settings through providing feedback on the text input, supporting a variety of 
platforms, such as Microsoft Windows and Mac OS with a desktop software interface as well as various 
web browsers using its web interface. Grammarly can also be installed as a web browser extension, 
where it checks texts within different websites. Recently Grammarly added yet another application to 
its features, this time, on smartphones. Users can now add Grammarly as a virtual keyboard that brings 
up grammatically correct “next-word” suggestions based on what the users have already typed in. The 
version of Grammarly’s desktop app used in this study is 1.5.36.

The online and desktop platforms have been through many updates and improvements in detecting 
errors in language, currently operationalizing up to 400 grammatical structures, an option to enhance 
vocabulary and selection of a specific style of writing to follow while providing feedback on the writing 
of its customers. This number was mentioned in the literature to be drastically lower “250 error types” 
only a few years before (Dodigovic, Mlynarski, & Wei ., 2016, p. 227). 
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3.3 Data collection

To be able to gather data on the effectiveness of grammatical error detection by Grammarly, the corpus 
described above was first read for errors. A native speaker of English, 3 graduate students majoring in 
TEFL and a professor of English read the papers for errors. The sets of identified errors were reviewed 
by the researcher in order to find some common ground. After consolidating the individual error lists 
into one, the common list was compared with the feedback gained from Grammarly. The results of the 
comparison were verified by the rest of the team.

The same corpus was divided into sections and uploaded into Grammarly in order to generate 
automated feedback on these errors. The corpus had to be divided into sections as Grammarly only 
supports a limited amount of text per each check. 

Grammarly Premium was used to generate the feedback on the corpus. The premium package 
supports many additional services, such as plagiarism detection and vocabulary enhancement. While 
those two features were not used, because this study is investigating form errors rather than semantics 
and style ones, another premium feature, which allows the selection of a document type to check the text 
accordingly, was enabled. For the subcorpora used in this study, the document type of “Essay” was used 
from the “Academic” subcategory. The other features of Grammarly, such as plagiarism detection and 
vocabulary enhancement were disabled. In order for Grammarly to produce form error feedback only, the 
contextual spelling, punctuation and style error checkers were also disabled (see Figure 1).

 

Figure 1. The choice of checkers and documents styles used to generate feedback

Grammarly creates reports marking the errors with various colors, each identifying the weight of the 
error. For example, red highlights in Grammarly represent critical issues, such as wrong preposition 
use, while the yellow highlights represent advanced issues, such as redundant determiners in text. 
However, the vocabulary Grammarly uses to address the typology of form errors discovered in text is 
also simplified for the purpose of being more user-friendly. This is not the case with the human raters 
that read the same corpus for errors. Thus, in order to successfully contrast the output of Grammarly 
with that of the raters, the typology for both needed to be the same, which was arranged for the purpose 
of this study.

While collecting the feedback on form errors provided by human raters and the report on the same 
errors provided by Grammarly, two quite different typologies of form errors emerged. The taxonomy 
used to describe the human raters’ notes on each error in corpus was adapted from a study on form errors 
(Wu & Garza, 2014). Grammarly, on the other hand, uses its own terms. Grammarly’s error taxonomy is 
not publicly available, although some parts of it become visible when Grammarly creates reports, which 
is the exact method that was employed to reconstruct Grammarly’s tacit taxonomy used to report on form 
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errors in this study (see Figure 2). The advantage of the Wu & Garza (2014) taxonomy is that it seems to 
rest on the premises quite similar to those that must have guided the authors of Grammarly, namely that 
language is multilayered, including lexis, grammar, semantics and other aspects.

Most of the typology that emerged in Grammarly’s reports is easily identifiable when it comes 
to matching it to the taxonomy used by the human raters. However, some of the error types used by 
Grammarly can be found to be connected to multiple categories of the converted taxonomy. For example, 
Grammarly’s “incomplete sentences” category includes errors of verb/subject omission and fragment 
errors, while modifier and quantifier misuse can apply to verb, sentence structure and singular and plural 
categories in the human rater’s error taxonomy (see Figure 2).

 

Figure 2. Form error taxonomy used by Grammarly versus human raters including connections 
between the two taxonomies of form errors

It should be noted that in Figure 2, some lines are red to make it easier to see their connection to the 
other taxonomy. The last two classes of error, 14 and 15, can connect to multiple error types in the other 
classification, depending on the context. Their connection was intentionally discarded in order to avoid 
confusion.

3.4 Data analysis

After the documents with error markings from human raters and the reports from Grammarly were 
collected, an important step was to convert all qualitative data into quantitative (see Table 1).
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Table 1 
The Description of Data Sources, Analysis and Quantitative Results
Source   

1.Human raters   

2.Grammarly report  

3.Grammarly UI   

The errors were counted in two different ways:
1. Using the emerging taxonomy (see Figure 2).
2. Using the pre-determined error detection evaluation flow chart (see Figure 3).

In this flow chart, detected errors represent errors flagged by the software for the correct reason, meaning 
when compared to those made by the human raters, these errors were found to be correctly highlighted 
and commented on. On the other hand, missed errors represent the errors that were undetected by 
Grammarly but detected by the human raters. 

The general category is for cases of somewhat correct error detection, where the software correctly 
detects the error but fails to pinpoint a certain phrase or sentence in the paragraph. The false positive 
(otherwise known as “over-flagging”) classification is for cases when the software flags a section of the 
text that contains no error.

 

Figure 3. The emergent typology of Grammarly's feedback accuracy
Note: There are no corrections or hints for the missed errors. The corrections and hints for the errors 
flagged as a false positive were discarded.

Data type 
(QUAL)
Documents 
containing 
errors that 
were marked.

A pdf report of 
the text, with 
errors marked.

A pdf report of 
the text with 
solutions/hints 
and the digital 
user interface.

Procedure

The documents were first compared, 
then the errors found in each were 
counted and classified according 
to the human rater’s taxonomy.

The reports were scanned to count 
the error frequencies. The errors 
were counted according to the 
taxonomy Grammarly used. 

The interface was scanned for 
correction suggestions and hints. 
A new taxonomy emerged when 
counting the correction instances.

Result (QUAN)

A dataset of errors 
that demonstrates the 
frequency of each 
form error.

A dataset of errors 
that demonstrates the 
frequency of each 
form error.

A dataset of corrective 
messages provided by 
Grammarly.
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As for the “Solutions” category, there are only two subcategories to choose from. The “correct”, that 
demonstrates a correct detection of the problem and, more significantly for this subcategory, the correct 
hint or solution for the user to find the solution to fix the error. The other category is “incorrect”, where 
the correction or hint for the detected error does not match the underlying problem.

This procedure was repeated with all 7 subcorpora that were analyzed by Grammarly and descriptive 
statistics were used to report the data. The most important section of the data is undoubtedly the 
percentage of matches found during the comparison of the first two sources. The quantitative data below 
reports the rate of matches found in the error detection of the two previously mentioned sources, this 
way, providing information on the accuracy of form error detection by Grammarly. The percentage 
coverage of errors was calculated by dividing the number of Grammarly errors that matched those of the 
Human Raters divided by the total number of errors detected by Human Raters.

Figure 4. Grammarly report example
 
Figure 4 shows the first page of the .pdf report generated by Grammarly for one of the subcorpora. The 
reports also contain the complete subcorpus with all errors highlighted. However, the reports do not 
include the correction or hint cards.
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4  Results

4.1 Grammarly reports on form

The following Grammarly reports were derived from the 7 sub-corpora and consolidated manually. 
(see Table 2).

Table 2 
Reports Generated by Grammarly on the Seven Subcorpora
                                                  Subcorpora
 Error type                                     1 2 3 4 5 6 7 Total
1 Determiner use                         14 7 8 18 12 9 5 73
2 Wrong or missing preposition            10 5 7 8 13 7 8 58
3 Faulty subject/verb agreement            3 3 0 5 4 2 0 17
4 Modal verbs                                     1 0 0 0 0 0 0 1
5 Incorrect noun number                         1 0 0 1 1 0 0 3
6 Misplaced words or phrases            5 2 2 6 3 3 1 22
7 Incomplete sentences                        1 1 2 1 2 0 0 7
8 Incorrect verb forms                         4 2 1 1 2 1 0 11
9 Incorrect phrasing                         0 1 0 0 1 0 0 2
10 Misuse of modifiers                         0 0 1 0 1 0 0 2
11 Misuse of quantifiers                        0 0 1 0 0 0 0 1
12 Numeral use                                     0 0 1 0 0 0 0 1
13 Pronoun use                                     0 0 0 1 0 0 0 1
14 Conjunction use                        0 0 0 0 1 0 0 1
15 Faulty tense sequence                        0 1 0 0 0 1 0 2
 Total for subcorpora                        39 22 23 41 41 23 14 203

When investigating Table 2, the first thing that stands out is the total count of various form error classes 
detected by Grammarly. For example, the most frequent error types are determiner use, wrong or missed 
prepositions and misplaced words or phrases.

The taxonomy used in the consolidated report represents a conversion to the common scale applied 
also by human raters. On average, the classes of form errors that had the highest frequency occurred 51 
(SD = 26.21) times. The error classes with the lowest frequency were modal verb, misuse of quantifiers 
and pronoun and conjunction use errors, followed by  misuse of modifiers, incorrect phrasing and faulty 
sequence of tenses across subcorpora produced (M = 1.2, SD = 0.44). 

4.2 The accuracy analysis

In order to address the first question of this study, Table 3 was compiled. It represents errors found by 
Grammarly per subcorpus and their evaluation by the research team. Grammarly was able to detect 203 
form errors. 

On average, Grammarly flagged 29 (SD = 11.06) form errors per subcorpus. Of those, an average 
of 20 (M = 19.57, SD = 5.82) for each subcorpus were found to be correctly identified. These are the 
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statistics of the “Detected” category in the error accuracy flow chart. “Detected”, in this scenario, means 
that the error was accurately highlighted and flagged as an error and subsequently classified as correctly 
identified by the research team. The accuracy of correction given is reported below (see Table 5). 

“General” is the class for errors detected, but not correctly. For example, Grammarly highlights a 
section in a sentence and detects an error. However, the error is in a different section of that sentence. The 
average error detection per subcorpus that was classified as “General” is lower that the “Detected” (M = 
2.5, SD = 1.3), while the total count of such instances (18) is considerably lower as well. 

The third column in Table 4 represents the total number of cases that were classified as “detected” or 
“general”. These classes represent Grammarly’s accurately detected errors. A total of 155 out of 203 error 
flags by Grammarly were accurate (76.35% of 203), not including the missed errors. The percentage 
column demonstrates the accuracy of the total number of form errors detected by Grammarly. The last 
row of the table is calculated horizontally, while the rest of the table is calculated vertically.

Table 3 
The Classification of Form Error Flagging by Grammarly
         Errors
SC Total ƒ        Detected   General       Total       %     False          Missed    Total             %
                                                                        correct                     positive                       incorrect
1 39(7)        23                4           27          58.6          12            7    19            41.3
2 22(2)        18                1           19          79.1     3            2    5            20.8
3 23(2)        19                2           21          84     2            2    4              16
4 41(7)        26                4           30          62.5    11            7    18            37.5
5 41(6)        25                4           29          61.7    12            6    18            38.2
6 23(3)        17                2           19          73     4            3     7            26.9
7 14(3)         9                1           10          58.8     4            3     7            41.1
SUM 203(30)       137   18           155        66%     48            30     78            33%
Note: SC = subcorpora, 203 = Grammarly-detected only, 233 = missed (30) combined

The next two columns, false positives and missed are very informative as well. False positive (otherwise 
known as over-flagging) and missed (otherwise known as false negative) demonstrate Grammarly’s 
inability to flag errors accurately, or to detect them at all. It is also important to understand which of the 
two are more detrimental to the user. However, these two classes of undetected errors on average are less 
common than the positive detection of errors by Grammarly (33% of all errors present in the corpus). 
The table shows that Grammarly was approximately 66% accurate in its flagging, or, approximately 33% 
inaccurate, not including the 30 errors that Grammarly missed.

The range of the percentages for accurate (from 56.2% in the first subcorpus to 84% in the third 
subcorpus) and inaccurate (from 16% in the third subcorpus to 41.1% in the seventh subcorpus) error 
flagging is within a 30% span, which is not negligible.

4.3 Analysis through contrast

The comparison between the human rater and Grammarly reports reveals some differences in the 
frequency of errors per category in the converted and combined taxonomy of errors. Table 5 demonstrates 
the frequency of errors found in the corpora analyzed by the human raters vs. that of Grammarly. It 
is essential to mention, that the frequency of errors found in the texts by different human raters was 
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averaged out to get a more accurate frequency of errors. As stated in the data analysis section, the errors 
detected by both human raters and Grammarly were further manually evaluated by the researcher. 
The errors that were found by one human rater only were discarded. There were altogether 32 cases of 
disagreement among human raters.

Table 4 
The Comparison of Frequencies of Error Detection by Human Raters and Grammarly
 Error Categories                           Human raters (ƒ)     Grammarly (ƒ)     Match (%)
1 Verb tenses                                       44                              39                              88.6
2 Sentence structure                          47                              35                              74.4
3 Coordination and subordination 13                              1                                7.6
4 Relative clause                                       9                              1                              11.1
5 Singular/ plural                          11                              4                              36.3
6 Verb omission                                       17                              3                              17.6
7 Subject omission                          15                              2                              13.3
8 S-V agreement                                       24                              17                              70.8
9 Fragment                                      8                              2                                  25
10 Determiner                                      74                              51                              68.9

Figure 5. Example of an incorrect detection of an error by Grammarly
Note. This error detection case was classified as “over-flagging”.

Table 5 represents the level of convergence between the human raters and Grammarly. It applies to the 
entire corpus, based on the adopted taxonomy, described in chapters two and three. The difference between 
the two provides a clue as to the effectiveness of Grammarly at the detection of various error types.

 

Figure 6. Example of human rater feedback discrepancy
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Figure 6 above exemplifies a case which was identified by one, but not all human raters. This case, 
alongside another 31 cases only identified by one marker, was not included in the total counts.

4.4 Correction

The purpose of this study was also to determine to what extent the corrective feedback on form provided 
by Grammarly is accurate in the given setting and sample. 

Table 5 
The Classification of Grammarly Solutions to Form Errors
 Errors (ƒ)                                             Solutions (ƒ)
SC Detected Correct                                Correct              Incorrect
1 39              27                                 19                           8
2 22              19                                 13                           6
3 23              21                                 14                           7
4 41              30                                 21                           9
5 41              29                                 21                           8
6 23              19                                 11                           8
7 14              10                                 6                           4

Table 5 demonstrates that Grammarly is to some extent effective when providing correction for the errors 
that it correctly detects. It is essential to mention that in order to count the error correction instances, first, 
the missed and over-flagged errors were excluded as it is expected that if Grammarly incorrectly detects 
an error, the correction of the error will be incorrect as well.

 

Figure 7. Example of an accurate error detection and correction by Grammarly.

5  Discussion of Findings

The objectives of this study were to assess the accuracy of firstly form error detection and secondly their 
correction by Grammarly. The findings demonstrate that Grammarly has approximately one third of 
inaccuracies while preforming either task, in addition to errors it ignores. This differs to some extent from 
both previously reviewed papers that deal specifically with the evaluation of Grammarly’s performance, 
not just in outcomes, but also in methodology. Unlike the present study, the first paper by Sevcikova (2017) 
finds very little discrepancy between Grammarly’s reports and those produced by human raters, while the 
second paper (Dembsey, 2017) gives a definite preference to human raters. 
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Dembsey (2017) also introduced a list of positive and negative reviews compiled from various 
sources, including blogs and websites. Some of the positive reviews mentioned in the list match the 
findings of this study. An example of this are Grammarly’s categories of errors and the clear explanations 
provided for the correctly detected errors. On the other hand, its confidence in Grammarly’s ability to 
handle large texts was not consistent with this study. While Grammarly could handle large essays, it was 
not able to analyze a relatively small corpus (cca 36000 words).”

Dembsey (2017) lends a voice, amongst other things, to those reviewers who find fault with 
Grammarly. The largest number of such reviewers reported false positives (over-flagged errors) and 
false negatives (missed errors) (Dembsey, 2017). This is similar to the findings of the present study. 
Other reviewers report unclear or technical explanations in the corrective feedback on each detected 
error. While it was not within the scope of this study to evaluate the ease of taking advantage of 
the correction or the comprehension of Grammarly’s error explanations, it could still be noted that 
Grammarly occasionally did present too technical and at times unclear explanations. The false-positives 
in Grammarly’s feedback on form could be connected to the hypercorrection as an error cause (Touchie, 
1986). Touchie describes this cause of errors as the repetitive correction of the same error that causes 
errors elsewhere in structures that would otherwise be correct. 

Another, more general, article argues that automated feedback on learner writing has no significant 
effect when the teacher is not involved (Wilson, Olinghouse, & Andrada, 2014). The present study seems 
to support such a conclusion, given the relatively high inaccuracy rate of Grammarly. Thus, it would seem 
that the involvement of a teacher in the process of feedback provision and review could eliminate the 
chance of hypercorrection through over-flagging, thus making the feedback more useful to the learner.

In the reviewed literature, the perspectives on error explanations and their effects become more 
positive over time, which suggests that Grammarly tries to improve the solution/hint provision service. 
However, while Grammarly is trying to make the terminology user-friendly and easily comprehensible 
for EAL learners and others, they are also running the risk of oversimplifying the error categories and 
classes. This was the main reason a taxonomy conversion system was introduced in the present study to 
manually evaluate the Grammarly error reports more effectively.

While reporting the convergence level (in Table 5) that answers the first research question of the 
study, some other patterns were found that are not within the scope of this study to investigate. For 
example, the average convergence level for the highly common error types of verb tenses, determiner and 
sentence structure is 77.3% (SD = 10.1) while the less frequent error type convergence percentages, for 
coordination/subordination, relative clause and fragment errors, is 14.5% (SD = 9.2). This is a concern, 
since patterns of this kind are frequent in ICALL accuracy evaluation studies (e.g. Darus & Ching (2009)) 
as they obviously abound in EAL learner output. However, investigating this anomaly is not the purpose 
of this study, although it raises interesting questions for further research.

6  Limitations

One limitation with the current study is that Grammarly’s feature set developed over the duration of the 
study and is likely to continue to develop. The detection of errors and the suitability of the correction 
feedback could have improved.

Another limitation is the human raters’ partial disagreement on error identification. The reports that 
the human raters generate are intertwined with a number of factors that are different for each human rater. 
The human raters that evaluated the texts for this study have different backgrounds. Thus, it is actually 
surprising that no more than 32 cases of disagreement occurred.

The last limitation is the relative uniformity of the essays included in the corpus. The essays came 
from Armenian undergraduate students, all majoring in English, which could be an influencing factor for 
the results of this study.
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7  Conclusions

This paper investigated Grammarly in order to find out how accurate it is in its analysis of and feedback 
on form, i.e. grammar errors in text. Of the errors detected by Grammarly, approximately 66% were 
found to be accurate error identifications, while the rest were false positives. Moreover, a number of 
errors were ignored by Grammarly, approximately 7% of the total number of identified errors. These 
numbers are to some extent discouraging with regard to EAL students as immediate users, as it is not 
clear how such students would be able to take on board the correct feedback and ignore the erroneous 
suggestions. In addition, Grammarly’s inability to identify some errors might lead such students to 
believe that the structures used are correct, which is a concern.

The findings of this study therefore suggest that Grammarly could be used by EAL students as an 
additional tool of form-related feedback but under the close supervision of a teacher. Currently, in light 
of the findings of this study, the usage of Grammarly as a stand-alone product may not be optimal. 

While Grammarly, as shown in this study, has aspects in its feedback that some learners of 
English could potentially benefit from, it also has issues that could potentially have a negative effect 
on the learning. This aspect of Grammarly, within a broader context of AWE, lacks research. Thus, 
a recommendation here is to study the positive and negative effects of both accurate and inaccurate 
feedback by Grammarly on EAL learners. It would also be useful to investigate how learners interpret the 
feedback and what they do in the immediate follow-up. This type of study could potentially illuminate 
the underlying problems of AWE systems and help researchers and developers from multiple disciplines 
uncover the full potential that AWE systems may have for language learners.
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